Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration.

نویسندگان

  • Hiroyuki Shimono
  • James A Bunce
چکیده

BACKGROUND AND AIMS Nitrogen (N) is a major factor affecting yield gain of crops under elevated atmospheric carbon dioxide concentrations [CO(2)]. It is well established that elevated [CO(2)] increases root mass, but there are inconsistent reports on the effects on N uptake capacity per root mass. In the present study, it was hypothesized that the responses of N uptake capacity would change with the duration of exposure to elevated [CO(2)]. METHODS The hypothesis was tested by measuring N uptake capacity in rice plants exposed to long-term and short-term [CO(2)] treatments at different growth stages in plants grown under non-limiting N conditions in hydroponic culture. Seasonal changes in photosynthesis rate and transpiration rate were also measured. KEY RESULTS In the long-term [CO(2)] study, leaf photosynthetic responses to intercellular CO(2) concentration (Ci) were not affected by elevated [CO(2)] before the heading stage, but the initial slope in this response was decreased by elevated [CO(2)] at the grain-filling stage. Nitrate and ammonium uptake capacities per root dry weight were not affected by elevated [CO(2)] at panicle initiation, but thereafter they were reduced by elevated [CO(2)] by 31-41 % at the full heading and mid-ripening growth stages. In the short-term study (24 h exposures), elevated [CO(2)] enhanced nitrate and ammonium uptake capacities at the early vegetative growth stage, but elevated [CO(2)] decreased the uptake capacities at the mid-reproductive stage. CONCLUSIONS This study showed that N uptake capacity was downregulated under long-term exposure to elevated [CO(2)] and its response to elevated [CO(2)] varied greatly with growth stage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.

We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading m...

متن کامل

Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply, in a Mediterranean environment

The short and long-term responses of flag leaf stomatal conductance (gs) and rate of photosynthesis (An) to elevated CO2 (757 μmol mol), 4 oC warmer temperatures and N supply were investigated in spring wheat (Triticum aestivum L. cv. Alcalá) crops grown in two seasons in field conditions under temperature gradient tunnels, in a Mediterranean environment. Plants grown at elevated CO2 had lower ...

متن کامل

Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]

Understanding the basis for intraspecific yield variability may be important in elucidating biological mechanisms that are associated with superior yield performance in response to projected increases in carbon dioxide concentration, [CO₂]. Using a free-air CO₂ enrichment (FACE) facility, two rice lines, S63 and W14, which differed consistently in their enhancement of seed yield when grown at e...

متن کامل

Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO(2) concentration on crop productivity.

BACKGROUND Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. ANALYSIS A review of the literature indicates that the quant...

متن کامل

Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of botany

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2009